

By Early 0’Clock Productions

Technical Design Document V4.1

All contents copyright ​©​ 2019, Champlain College. All rights reserved

Champlain College

May 2, 2019

2019 Ubisoft Game Labs Competition

Index

Click to jump to section

Overview

❖ Game Concept

❖ Delivery Platform

❖ Technical Goals

❖ Art Pipeline

❖ Design Pipeline

❖ Logical Flow Diagram

❖ System Requirements

❖ Systems

❖ Win Condition

Code Overview

❖ Development Environment

❖ File Formatting

❖ Comments

❖ Source Control

User Interface

❖ Game Menu

❖ Website

Task List

❖ Current Milestone​ (DLC)

Technical Risk

❖ Website - Hard

❖ Team Size - Medium

❖ Unity Packages - Medium

❖ Art Pipeline Risk - Medium

Team Sign Off

DoC 2

Back to Top

Overview

Game Concept

Descent of Champions is a round based arena brawler where players must compete to

win the audience’s favor. Spectator’s watch the game live and influence gameplay to

make their show more entertaining. Players in the match will complete objectives and

adapt to the changing arena to gain the most points and win the game.

Delivery Platform

PC release is the target platform as it is the most common streaming platform but since

the game is meant to be played with a controller other platforms would potentially be

supported. The website will be designed for mobile but will work on desktop as well.

Major brand mobile phones that have been released in the last 2 years are optimized to

work with the site. The target stream platform we are integrating with for the prototype

is Twitch but for full release would be able to support other large platforms such as

YouTube.

Technical Goals (Current)

Top Priority:

● Implement announcer voice line systems

● Bug fix issues found during Ubisoft playtest

● Implement ​Revenge of the Grunts​ DLC

o Exploding grunts audience buyable

o Visual queues to show event has started

● Implement hats and custom audience colors

Secondary Priority:

● Implement Confetti mode - everything explodes in confetti

● Implement Easter Eggs because why not

● Implement website art for DLC buyables

● Implement bonus in game art

Art Pipeline

Art will be imported into the game in the existing file structure with the naming

convention ​DoC_nameOfObject_typeOfObject_specifier.fileExtention​.
Importing art from Maya will be done to an external folder to assure files are named and

DoC 3

Back to Top

formatted correctly and then moved into the Unity project in the correct location. Art

will be committed to the repository in it’s own branch to be merged and implemented by

programmers later. Artists are responsible for checking in engine that assets work as

specified. Artists will also be able to apply textures, animations and shaders in engine

for working directory branches with help from programmers. Artists will refer to the

GDD for specifics on functionality of art and animations to ensure they will work with

existing systems. Art will also be planned one week in advance from implementation so

programmers do not get held up in implementation. For technical assets (assets that

may need pieces to be moved individually) ensure that when exporting all objects in the

parent have the ability to be moved freely relative to the position they are in world space

rather than to the parent as well as making sure those assets are individually accessible

pieces and not one large mesh under the parent.

Design Pipeline

Everything for programmers to implement per milestone should be referenced in the

GDD in detail. Every sprint the GDD will be updated to reflect tasks of the coming week.

After first implementation of features designers will balance in engine and only call on

programmers to revisit features for reworks when massive changes are necessary.

Programmers are responsible for implementing features in a way that allows designers

to easily modify conditions and variables through the inspector. File structure is to be

followed for additions in engine and good code architecture is expected if scripts are

added by designers (See Microsoft C# Coding Standard for more). If features come up in

the middle of a sprint they must be held until a new sprint as to not overburden

programmers with excessive expectations per sprint. Designers will be planning one

week in advance from implementation so programmers do not get held up in

implementation. Andy is lead designer for immediate decisions. When possible ask

relative designers to their specialty but if decisions are being held up and need to be

answered Andy is in charge of making those decisions as a lead. Programmers and

Artists must read the GDD in detail every release to keep up to date on the latest

changes. Designers will also give a list of public variables they wish to have accessible in

a feature in their design documentation so Programmers can plan accordingly. ​For

programmers and designers in engine you should make a copy of the most

recent build scene and do edits in the test scene. When the work is complete

you can add those changes to the main scene and assure that you only affect

what you need in the main build. DO NOT commit test scenes unless you

need to come back to work later at a different location. You should have

completed the task to the fullest extent and implemented into the game in a

FINISHED STATE.

DoC 4

Back to Top

Logical Flow Diagram ​Find the full PDF ​here​.

DoC 5

Back to Top

https://drive.google.com/file/d/1UmRVLHavVwP5aMm5Mftunk7QexWqRlu2/view?usp=sharing

System Requirements

Required:

● Game:

○ 3 Xbox controllers

○ Windows 7 and up

○ 2nd generation Intel Core i3, AMD - FX-6300 6-Core Processor, or higher

○ 4 GB RAM

○ Graphics: Nvidia 8800 GT, AMD 5670, Intel HD 3000

○ 1.0GB of storage

● Website (Spectator):

○ All smart phone brands

○ Model year 2010 and up

○ Any browser

○ Desktop accessible

Recommended:

● Game:

○ 3 Xbox controllers

○ Windows 10

○ 7th gen Intel Core i5 or AMD equivalent

○ 8 GB RAM

○ Graphics Nvidia 1070 or AMD equivalent

○ 1.5GB of storage

● Website (Spectator):

○ iPhone or Android

○ Model years within the last 2.5 years

○ Google Chrome

Systems

Movement​:

Minimum controller dead zones are utilized as controls should be snappy and instant.

There is still an acceleration to the speed of the player through percent of controller

stick input but there will always be some form of input. Button interactions are a mix of

holds and presses, special moves have held aims/charges where movement and small

attacks are instant presses.

DoC 6

Back to Top

Physics​:

The game removes as many random physics components as possible in the controls and

enemy interactions but maintains a random physics element when enemies die. The

enemy parts detach from their parent object and an explosion force is applied to them.

Collectibles are also affected by physics. Forces are being monitored on most objects to

ensure if an object is not moving when it should that it is forced to comply. This system

allows for some control over the randomness of the physics engine.

Levels​:

Every level takes place on a floor composed of hexagons that can be set to be used as

spawn points for enemies. Objectives for a level are spawned independently of the floor.

Objectives are to be textured similarly to indicate that they are objectives that give the

player points such as gold hockey nets, golden grunts, and golden scraps for scrap

collector. The floor breaks apart at the end of a round and explosion force is applied to

the pieces similarly to how enemies are treated. See ​Physics ​above. Players fall through

the floor along with audience spawned enemies and objects and are placed in position

once off camera for the next round.

AI:

The AI is controlled by NavMesh. Different behaviors are programmed for each enemy

following a base class to ensure the similar traits are kept (death animations are shared

between enemy types by exploding to give an example). Downsides of the NavMesh

component is the floor is not static for the whole game and enemies tend to leave the

ground at times. This can cause errors from the NavMesh by not having a valid target.

To resolve this we do frequent checks to ensure the AI only checks to move when

possible and conditions for the NavMesh agent are satisfied.

Win Condition

Players can gain score through different means on the different objectives. The score is

cumulative through rounds up to 5 rounds. At the end of the rounds the person with the

highest score (denoted by a crown UI element during the game) is declared the winner.

If players tie, the winner is decided by their cumulative objective scores between the

rounds. If players tie in round and objective scores, the winner is decided by player ID.

This scenario is very rare but accounted for.

DoC 7

Back to Top

Code Overview

Development Environment

Unity 2018.3.4f1 is the target build for this game. Packages implemented at the

beginning of the project may be dependent on version 3.0 so it is not advised to use

older builds. Rewired is being used as the main controller input manager. Mercurial is

the chosen repository manager with Pineapple hosting the main repo. Builds of the

game must be made using version 2018.3.4f1 preferably within 1 version forward to

maintain consistency. 2018.3.4f1 solved a bug that caused issues with rasterization

resulting in a game crash when the error was created.

File Formatting

Code is written in C# (.cs) and conforms to the ​Microsoft Coding Standard​ for in

engine systems. Website implementation is written using PHP and Ratchet for

websockets. HTML, CSS, Ajax, Javascript for website front end. The server uses Apache

and MySQL tables. Naming convention for all script files should be as follows:

functions - FunctionName(); variables - variableName;

Comments

Comment all new code you add to effectively communicate to the team what each

addition does so this document can be updated accordingly, and other members can

work without needing a decoder ring. Include any specific comments about unfinished

code or anything else that may need explaining clearly in the files changed.

Source Control

Using Mercurial through Tortoise Hg to manage repository. Pineapple is hosting

through Champlain College. Find out how to set up Mercurial ​here​. Currently server

information is stored on a private GitHub. Implemented interaction code is kept with

the main game repository. A Microsoft Azure server hosted the website leading up to the

competition date (April 1, 2019) but from that point forward is set up to work on local

machines connected to the same network.

DoC 8

Back to Top

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://drive.google.com/file/d/16VZM8w2RlGMz-Hx-uH3tkIhwWWue2LSC/view?usp=sharing

User Interface

Game Menu

Twitch authentication for the streamer will be accessible when starting the game. This

takes you to a webpage to verify with Twitch that your account is correct so streams

cannot be created by fake users under a popular name.

Website

Login screen that is prompting for username. Brought to lobby to show active streamers.

After selecting a stream you are brought to the stream with an active chat. Other tabs

include “shop” and “emote”. The shop allows users to crowd fund in game interactions

and currency is earned through passively watching the stream and by tracking

participation on the website. New tabs added after the competition date (April 1, 2019)

include an emote customization system that allows you to change the color and hat of

your emote in the game.

Task List

Current Milestone (DLC):

● Add announcer voice lines and system to play them (Gameplay)

● Add announcer voice lines (Flavor commentary)

● Bug fix issues found at Ubisoft playtest

● Implement backend for hat and color customization systems

● Implement ​Revenge of the Grunts​ DLC content

o Grunts explode after first attack

o Grunts smoke to denote that they are enraged

o Implement UI to denote event has started

o Implement art to denote grunts are different from regular grunts

● Implement Confetti Mode

o All enemies explode with confetti after death

o Just… confetti everywhere

● Polish existing systems and implement QA feedback

DoC 9

Back to Top

Technical Risk

Website - Hard

The website is by far the biggest risk to this game but it is also the best way for us

to get meaningful player interactions in a way the is easy to pick up, fun to use,

and give us complete control over the experience. Server implementation and

scalability will be difficult to implement as well. Twitch plug-ins would be a safe

fall back as Twitch is very willing to get developers making new interactions for

their platform and this would be easier in the event that the website crashes and

burns somewhere down the road. Programmers in the dev team have very limited

experience with web development but with the progress made in the early stages

of prototyping we are comfortable accepting this risk seeing the progress that has

been made.

Team Size - Medium

This many people in a project makes it difficult to manage a clean and working

repository as well as maintaining effective communication. Through the use of

this document we hope to minimize this risk and ensure all developers are on the

same page as well as have effective knowledge of repository use as to prevent

major impediments in the future.

Testing Feedback - Medium

Due to the limitations of QA we have limited fresh views to test our game with

along with limited time to test in the Montreal QA. We have to reach out to

people beyond our school to get fresh views which could be difficult but luckily

we are in Montreal and finding willing participants should be possible.

Unity Packages - Medium

There are packages in our Unity build to make life for artists and designers easier

such as HD Render Pipeline that programmers have never worked with before

and have already caused some minor set backs in the prototyping phase. We

believe that despite the initial setbacks it will help later in the development

process so we accept this risk in hopes for an easier life down the road.

Addendum (4.15.19) ​After significant development with HDRP in the project

it has come to our attention that the package is far too early in Alpha to be

deemed useable for large scale projects and the initial risk associated with the

packages was not properly measured. Numerous setbacks have resulted from the

HDRP included in the project but it is too far into production to remove the

DoC 10

Back to Top

package. From this point forward the team has become quite familiar with the

limitations of HDRP and it would be more risk to remove the package than to live

within our limitations.

Art Pipeline Risk - Medium

Our programmers have never worked with 3D artists before as well as have

limited experience with shaders and graphics in general. Working with 3D artists

will be an initial challenge but a completely necessary one as the game is in 3D

and there is no getting around that.

DoC 11

Back to Top

Team Sign Off

James Van Nuland___

Producer

Scott Aquino ___

Programmer

Mark Botaish___

Programmer

Tyler Chapman____________​_​_______________________________

Programmer

Andersen Pinckney___

Designer

Richard Hardy __

Designer

Nicholas Kline__

Artist

Isaac Mills___

Artist

DoC 12

Back to Top

